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122 E. N. FOX

Known exact solutions in limit analysis for rigid—perfectly plastic plates are relatively
scarce because of their probable complexity even for simple loading and edge condi-
tions. This complexity is exemplified in the present exact solution for the problem of
a uniformly distributed load on a clamped square plate of isotropic homogeneous
material obeying the square yield criterion in bending. The solution is extended to
cover the case of a uniformly distributed load on a clamped plate of any regular
polygonal shape. A comparison of the present exact results and those of Fox (1972)
with earlier upper bound solutions is evidence that close upper bounds for the collapse
load will normally be obtainable by the use of assumed mechanisms much simpler
than the exact mechanism.

NoraTIiON

Excluding subsidiary symbols appearing only briefly where defined in the text, the notation
is given below. All moments and shear forces are per unit length along a normal section of the
plate.

a radius of inscribed circle for regular polygonal plate
A(a), B(a) arbitrary functions for a parabolic field, equation (22)
So(w) arbitrary function for hyperbolic net, equation (18)
F(u) defined by equation (58)

() length PJ, figure 4

hy, by defined by equation (4)

hyss By values of #;, #, at a point on the junction AFE, figure 2
L side of square plate

L, defined by equation (1)

mg yield moment

my, My principal moments

My My, principal moments in a hyperbolic field

My, My principal moments in a parabolic field

m,, My principal moments in a radial field

n number of sides of regular polygonal plate

J/ uniform pressure loading

Pe collapse pressure

Gus 9o shear forces in a hyperbolic field

Qas 9p shear forces in a parabolic field

Grs Qo shear forces in a radial field

r radial polar coordinate

R length IQ) , figure 4

R, length IP, figure 4

R, length IJ, figure 4

S15 Sa distances along trajectories in a hyperbolic field

$1i value of s; at a point on the junction AFE, figure 2

u, v orthogonal curvilinear coordinates in a hyperbolic field
Ug value of u at E, figure 2

u;(v) value of u at a point on the junction AFE, figure 2

vy value of v on DE, figure 2

vy (u) value of v at a point on the junction AFE, figure 2
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LIMIT ANALYSIS FOR PLATES 123
w small deflexion of the plate
%Yy rectangular coordinates
o, orthogonal curvilinear coordinates in a parabolic field
Vs V1 defined in figure 5
Au, Av increments in u, v for numerical calculations
Cw & defined by equation (67)
5 = Qw/[hyOv
0 angular polar coordinate
Ky, Ko principal curvatures
Kyus Ky principal curvatures in anticlastic surface of mechanism
Ky =0 twisting curvature in anticlastic surface of mechanism
Kas Kg principal curvatures in developable surface of mechanism

Kgy Kn» Kne  curvature components of mechanism for sections along and perpendicular to the
junction AFE, figure 2

A hyperbolic net angle, figure 3

Ay value of A at a point on the junction AFE, figure 2

M Mo defined by equation (64)

£ = Ow[h, Ou

P1s P2 radii of curvature of hyperbolic trajectories, equation (5)
Piis Pal values of p;, p, at a point on the junction AFE, figure 2
x(2) defined by equation (53)

y=1n—A

1. INTRODUCGTION

In an earlier paper (Fox 1972) on limit analysis for rigid—perfectly plastic plates, the author gave
the exact solution for the problem of a central point load on a simply supported rectangular
plate of isotropic homogeneous material with yield in bending governed by the square yield
criterion. The solution exemplified the possible complexity of exact solutions in this field, even
when the loading and edge conditions are apparently simple. In the present paper, the exact
solution is given for the problem of a uniformly distributed load on a clamped square plate of
isotropic homogeneous material obeying the square yield criterion in bending. This exact
solution is also complex with a mechanism consisting of a combination of developable and
anticlastic surfaces, together with undeflected corner regions. The analysis is extended to cover
the case of a clamped plate of any regular polygonal shape under uniform pressure and results
for the collapse load are compared with some known upper bounds.

2. STATEMENT OF MAIN PROBLEM

We consider a square plate of side L and uniform thickness subjected to a uniform lateral
pressure p. For convenience of nomenclature we regard the plane of the plate as horizontal,
with load and deflexion positive downwards and with moments and curvatures taken positive
when sagging. The material of the plate is homogeneous and isotropic, and yield in bending is
governed by the square yield criterion with a yield moment m, per unit length of plate in both
sagging and hogging curvatures.

For analysis we shall work non-dimensionally by introducing the length L, defined by

L3 = dmyfp, (1)

16-2
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124 E. N. FOX

so that in the subsequent notation all lengths in the plane of the plate represent multiples of L,
while component moments per unit length represent multiples of m; and component shear
forces per unit length represent multiples of my/L,,.

The conditions for an exact solution of a problem of limit analysis for rigid-perfectly plastic
plates loaded in bending have been discussed in detail by the author elsewhere (Fox 1968).
Here we summarize these conditions for the present problem. First we define a statically admis-
sible stress field as one in which the moments and associated shear forces satisfy () equilibrium
with uniform pressure over the plate area, and () the square yield criterion illustrated in
figure 1 in terms of principal moments m,, m, per unit length of plate. Thus any deformation
occurs only for states on the perimeter of the square ABCD and states outside the square are
prohibited. Secondly, we define a mechanism as a small virtual deflexion of the plate such that
(a) the deflexion is continuous and the slopes are at least piecewise continuous over the plate
area, and (4) the deflexion is zero at the edges of the plate.

Ve

C 1 B

E
-1 1 .
D ——— A

Ficure 1. Square yield criterion.

For an exact solution, we must find a value p¢ of the pressure, called the collapse pressure, such
that there coexist a statically admissible stress field and a mechanism related at all yielding
parts of the plate by the normality rule defined below. The mechanism may contain variously
(i) rigid leaves where the plate remains plane and undeformed, though a leaf may deflect as
a rigid body, (ii) yielding regions of finite curvature, and (iii) hnge-lines corresponding to either
(a) a discontinuity of slope across a boundary between two regions of the mechanism, or
(b) non-zero normal slope on a clamped edge.

At a point in a yielding region of finite curvature in the mechanism, the normality rule can be
specified in terms of principal moments (my, m,) and associated principal curvatures (ky, k) by
the two conditions that (a) the directions of the principal curvatures coincide with the principal
moment directions, and () a vector in the (m,,m,) plane with components proportional to
(k1 K2) s in the direction of the outward normal to the yield locus ABCD (figure 1) at the
associated point (m,, m,) on ABCD. Thus for (m,,m,) at E on the side AB, the second condition
requires that k; > 0, k, = 0, while at the corners, regarded as limits of quadrants of circles of
small radius (Fox 1968), the second condition requires that k; > 0, k, < 0, k; —k, > 0 at A and
thatk; > 0, k, > 0, k; + k&, > 0at B. On a hinge-line, the normality rule requires that the normal
moment is a yield moment of the same sign as the hinge rotation.
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LIMIT ANALYSIS FOR PLATES 125

In the present solution, we shall be concerned only with yielding states where m; = 1,
—1 < my < 1 corresponding to the side AB of the square yield locus of figure 1. We shall use
the term parabolic region to denote any yielding region where m; =1, —1 <m, < 1 at all
internal points of the region, and the term Ayperbolic region to denote that m; = 1, my = —1
everywhere in a region. The stress field will be described and analysed in terms of a moment net
consisting of two families of orthogonal curves such that at any point in the plane of the
undeformed plate, the tangents to these curves are in the principal moment directions. These
curves will be referred to as the principal moment trajectories and by the normality rule, they
correspond also to the lines of curvature of the mechanism.

The search for an exact solution in the present ficld, other than by purely numerical methods,
normally commences with some preconceived pattern for the moment net and the associated
mechanism; accordingly, we shall next describe the main features of the present exact solution
and then justify this solution by later analysis.

3. GENERAL DESCRIPTION OF THE EXACT SOLUTION

In view of symmetry, we need consider only a triangular region forming one octant of the
square plate as shown in figure 2, where C is the centre of the plate, B is a corner and A is the
centre of one edge. The broken curve AFE is the junction between parabolic and hyperbolic
moment nets illustrated in figure 2 and described below.

B

Ficure 2. Moment net in the deforming region of an octant of the plate.

Region ACEFA ( figure 2)

This is a parabolic region with the moment net formed by (i) a family of straight principal
moment trajectories e.g. CA, GF, HE, joining points on CH to points on AFE, and (ii) an
orthogonal family of curved trajectories. The normal moment on any straight trajectory is
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126 E. N. FOX

m; = 1 throughout the region, while the other principal moment satisfies m, = 1 on CH,
my = —1 on AFE and —1 < m, < 1 elsewhere in the region. There is unit normal moment with
zero twisting moment and shear force along both CA and CE where the field is in equilibrium
with similar fields in the adjacent octants of the plate. The associated part of the mechanism is
a developable surface with generators along the straight trajectories and with sagging curvature
circumferentially. The surface has zero slope normal to the extreme generators CA and HE
where it joins similar surfacesin adjacent octants with continuous deflexion, slope and curvature
across CA and HE. But the portion CH of the diagonal of the square is a sagging hinge-line
with zero hinge-angle at H and increasing hinge-angle from H to C.

Region AFEDA (figure 2)

This is a hyperbolic region with m; = 1, my = —1 everywhere and the two families of
principal moment trajectories are curves of the type shown in figure 2. The trajectories with
normal moment m, = — 1 are all tangential to the part AD of the plate edge, with DE as one
extreme trajectory and a vanishingly small trajectory as the other extreme at A, where the
junction AFE is also tangential to the edge. The normal moment, twisting moment and shear
force along AFE are continuous across this junction to give equilibrium with the parabolic field
in the region ACEFA. Moreover, the principal moment directions are continuous across AFE
so that the trajectories in the two regions join with continuous slope at this junction. The
mechanism in AFEDA is an anticlastic surface in which the deflexion, slopes and curvatures
are continuous across AFE with those in the adjacent developable surface. But there is a dis-
continuity in the circumferential sagging curvature across DF within the anticlastic surface,
and an associated discontinuity in sagging curvature across GF in the developable surface. The
deflexion is zero along AD and DE which are hogging hinge-lines. The hinge-line DE is
tangential to the edge at D and meets the diagonal at right angles at E.

Region DEB ( figure 2)

In this region the plate remains undeformed in its original plane and any one of an infinite
number of statically admissible stress fields in this region will suffice to complete an exact
solution.

The collapse pressure
In dimensional units, the collapse pressure p¢ is an unknown to be determined; the corre-
sponding unknown in our non-dimensional units in relation to figure 2 is the half-length of the
side, namely AB = AC = g(0) of the later analysis, where
8(0) = Lf2L,. (2)
As described later, the present solution gives g(0) = 1.636521 and from (1) and (2), the
corresponding rounded value of the collapse pressure is

pe = 42.851m,[L2. (3)

4. THE MOMENT NET IN THE HYPERBOLIC REGION AFEDA (FIGURE 2)
Referring to figure 3, we use orthogonal curvilinear coordinates (u,v) corresponding to the
principal moment trajectories through a typical point Q. Thus QR is a trajectory # = constant
with principal normal moment m, = 1 and downwards shear force ¢, per unit length on a
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LIMIT ANALYSIS FOR PLATES 127

section with outward normal Qu, while PQ) is a trajectory » = constant with principal normal
moment m, = —1 and downwards shear force ¢, per unit length on a section with outward
normal Qu. Specific definitions of # and v will be made later; first we introduce %, %,, positive
by definition, to. denote the Lamé parameters such that an element of length is given by

ds? = h2du?+ h%de?, ' (4)

'

U Sy
u, 8

Q

o Pats

A x P R D

Ficure 3. Notation for moment net in hyperbolic region.

and we use sy, 55, to denote distances along the trajectories. Also, we use A to denote the net
angle (figure 3) defined as the anticlockwise rotation necessary to bring the positive x direction
into coincidence with the positive z direction at the typical point Q (figure 3). We assume the
following known relations for an orthogonal net which are easily derived:

hy Ok A % Yy
e T has % o ;
h_ O 00 ay o @
ps  hOu ' hou T k0’

where p;, p, are the radii of curvature of trajectories v = constant, # = constant respectively,
taken as positive if the trajectories are concave when viewed in the positive » and « directions
respectively. Thus p; < 0, p, > 0 at Q in figure 3.

Hopkins (1957) has given the equations of equilibrium in curvilinear coordinates corre-
sponding to the principal moment trajectories, and for the present case of uniform pressure and
a hyperbolic field, these equations simplify to give in our notation and non-dimensional

symbols: 02A[/0udv +hyhy = 0, (6)
m,, = 19 mi’:—l’} (7)
Qu = 2[pgy ¢v=— 2/pl'

Now on the trajectory QR (figure 3) where du = 0, and h,dv = ds,, it follows from (5) that
OA[du = —dhy[ds, and then from (6) we find that

d?ty/dsi—hy = 0 (u = constant). (8)
Similarly from (5) and (6) we find that
d%,[ds2+hy = 0 (v = constant). (9)

Hence £y, hy, may be expressed in the forms
ky = f1(u) cosh s, — f>(u) sinh 5,,
hy = f3(v) cos sy +f(v) sin sy, }
where 0sy/0u = hy, OspfOv = hy, ‘ A (11)

(10)
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128 E. N. FOX

and f;, ..., f; are at present arbitrary functions (the negative sign before f, in (10) is a convenience
here as leading to a positive f, in our present problem). Equations (10) and (11) hold generally
for any hyperbolic field under uniform pressure loading.

Referring to figure 3, we now specify #, v by (&) the constant value of « along RQ is = AR,
and (4) the constant value of v along PQ) is v = — AP. With these choices we have

u+v =0 on the edge AD, : (12)
u=0, v=0 atA, 5 (13)

and if we measure s;, 5, from the edge, then
$1=0, s,=0 when u+v=0. | (14)

We require PQ to be tangential to the edge AD since this is a hogging hinge-line, and if we
temporarily let figure 3 refer to a point Q very close to Pso that Pis (, —u), Ris (¢ +du, —u—du)
and Qis (u+du, —u), then PR = du, QR = A, dv = A, du, PQ = £, du to the first order, and the
tangential condition that QR/PQ — 0, PQ [PR — 1 as du—> 0, gives

hy=1, hy,=0 when u+v=0. (15)

Equation (15) would follow equally if the trajectories v = constant (e.g. PQ ) were tangential
to a curved edge, and here we need the further condition that the edge AD is straight, namely

Alu, —u) =0, : (186)
whence 0A/0u = 0A[0v on the edge and then from (5) we find
Ohy[hyOv + Ohy[/hyOu = 0 when u+v=0. (17)

The use of (11), (14), (15) and (17) in (10) leads to

hy = cosh s, — f,(#) sinh s,, (18)
hy = fo(—v) sins;, }
as the basic equations for the hyperbolic net in AFEDA (figure 2) where
si= " hydu, sy=| hydo, (19)
—v —u

in terms of integrals along trajectories v = constant and # = constant respectively.

We thus have one remaining arbitrary function f,(#) for use later when satisfying conditions on
the junction AFE of figure 2. We denote this junction by » = v;(u), where vj(x) is at present
unknown save that from (13) it must satisfy

0;(0) = 0, (20)
since the junction passes through A.

For a given positive f,(«), there is no intrinsic difficulty in the numerical evaluation of 4;, &,,
5, and s, from (18) and (19) by marching out from the edge, and in view of (5) and (18), the
values of A, ¥ and y can then be evaluated, in particular, from

A =f” S2(—v) coss; dv,

X = u—-fv hysin A do, (21)

y=|" hycosAdy,

where the integrations are along the trajectory « = constant through any typical point.
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LIMIT ANALYSIS FOR PLATES 129

5. THE MOMENT NET IN THE PARABOLIC REGION ACEFA (FIGURE 2)

In this region where the stress regime is m; = 1 and —1 < m, < 1 inside the region, the
normality rule requires that k, = 0 so that the mechanism is here a developable surface, while in
the stress field one family of principal moment trajectories will be straight lines corresponding to
the generators of the developable surface.

Ficure 4. Notation for moment net in parabolic region.

Referring to figure 4, we use orthogonal curvilinear coordinates («, £) analogous to (,v) of the
previous section, so that a is constant on PQ J which is a typical straight trajectory meeting the
junction in J and having normal moment m,, = 1 and associated shear component g¢,, while 4 is
constant on the typical trajectory LQM with normal moment m; and shear component ¢,. The
family of straight trajectories will be tangential to some envelope such as HIK and the trajectory
LQM will be an involute of HIK. We define « as equal to the net angle but we do not need to
define g specifically, since the equations of equilibrium for a parabolic field can be integrated
generally (Collins 1971), with moments and shears expressed in terms of the net angle & and the
radius of curvature IQ = R (say) of LQM at any typical point Q. For uniform pressure, in the
present non-dimensional notation, the field in the parabolic region is of the form

my = 1,
mg = 1—3§R*+ A(a) + B(a)[R,
9s =0, 3 (22)

g = 2R—A(a)[R,

where A(a) and B(a) are arbitrary functions.

17 Vol. 277. A,
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130 E. N. FOX

The extreme straight trajectories are CA and HE (figure 4) with principal normal moment
m, = 1 and zero shear force, whence the field (22) will be in equilibrium across AC and HE with
similar fields in the adjacent octants.

On CH, which is to be a sagging hinge-line in the mechanism, the normality rule requires that
the normal moment on CH is the yield value of unity and since m, = 1, this requires thatm, = 1
also on CH; this then ensures that every direction through a point on CH is a principal direction
with unit normal moment and zero twisting moment. Further, the normal moment will then be
continuous across CH with the similar field in the adjacent octant. Secondly, for equilibrium
with this adjacent field, we require zero shear force on CH which will be satisfied if ¢, = 0 since
this condition, with ¢, = 0from (22), then ensures zero shear on a section in any direction through
a point on CH. Thus if we write R = R, = IP on CH, we require

mp=1, ¢qs=0 when R =R, (23)
which will be satisfied by (22) if we choose
A(x) = 2R}, B(a) = —5RS, (24)

in which R, will vary with e. Thirdly, for a valid field in the region ACEJA (figure 4), it is
necessary that the envelope KIH does not anywhere lie inside this region, and for this it is

sufficient that Ry >R, >0, (25)

where R = IJ, and the equality sign will hold at H where CH touches the envelope KIH.
Noting that we shall later satisfy (25) and also m; = — 1 on the junction AJE (figure 4), it is

easily verified from (22) and (24) that m, is monotonic decreasing from m, = 1 at P tom,; = —1

at J as Rincreases on a typical trajectory PQ) J, and the parabolic field is thus statically admissible.

6. CONTINUITY CONDITIONS ACROSS THE JUNCTION AFE (FIGURE 2)

Referring to figure 5, SS is a portion of the junction curve AFE which is not a principal moment
trajectory for either the parabolic field of coordinates («, #) or the hyperbolic field of coordinates
(u,v), while NN is the normal to SS. Then without loss of generality, we may assume that

0<y,<im, O0<]|y|<inm (26)

while the principal moments in the two fields will satisfy

m, = 1 —1<my<1
(2 H B a} (27)
m, =1, m,=—1.
The continuity of normal moment across SS then gives
(1 —mp) cos®y; = 2cos?y, (28)

whence to satisfy the yield criterion —1 < m; < 1, we need cosy; > cos?y so that (26) is replaced

b
Y 0<y <yl <im (29)

Secondly, in the associated parts of the mechanism we exclude the degenerate cases where

either part is a plane and assume that the principal curvatures satisfy
K,>0, k=20
a ) ) ’ } (3 0)
» <0, K,—K,>0.

K.

w =0, K
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LIMIT ANALYSIS FOR PLATES 131

Now since SS is not in a principal moment direction, it cannot be a hinge-line and the adjacent
surfaces of the mechanism must join with continuous slopes and have a common normal at any
point on the junction. But then both the curvature component «, along the junction and the
twisting component «,, must be continuous across the junction, whence we find

K, cos%y; = K, cos?y + K, sin? 'y,} (31)
K, sin 2y, = (k, —kK,) sin 2y,
and by eliminating «, we obtain
KySiny = K, cosy{sin (Y —vy). (32)

Then from (29) and (30), the signs of the two sides in the second equation of (31) are only con-
sistent if sin 2y > 0 whence 0 < y < 4=, and the signs of the two sides in (32) are then only
consistent if 0<y<y <bn (33)

N o

S u N
Ficure 5. Notation at junction of parabolic and hyperbolic regions.

The condition (33), relating to the mechanism, is only consistent with (29), relating to the
stress field, if
V=N (34)

so that the principal moment directions must be continuous across the junction. Then, from
(28), (32) and (34) we must satisfy

in the parabolic field at the junction, and
Ky=10 (36)

in the anticlastic mechanism at the junction.

We defer further consideration of the mechanism and concentrate on the stress field for which

the remaining junction condition is continuity of shear which requires that
, 9p = o+ qutany (37)
on the junction.

We thus have the three conditions (34), (35) and (37) to be satisfied by the stress fields at the
junction and we now consider these in detail. We shall regard the coordinate u of the hyperbolic
field as the basic independent variable along AFE (figure 2) with v = v;(x), at present unknown,
along this junction. We use generally a suffix j, additional to any other suffixes, to denote values
of field properties on the junction, and referring to figure 4 we shall write

IP = Ry(u),
IJ = Ry(u), (38)
PJ = g(u) = Ry(u) — Ry(w).

17-2
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Now the junction condition (34) means that the parabolic net is related geometrically to
the hyperbolic net at the junction by the condition that any straight trajectory PJ (figure 4)
is the tangent to the hyperbolic trajectory # = constant through J. Thus referring to figure 6,
the point I is the intersection of two such tangents at neighbouring points J, J’ on the junction
where JZ = —hyydo, Z]' = hyydu, IP = Ry, 1] = Ry, PJ = g, P’]’ = g+ dg and angle PIP’ = dA;
to the first order. It is then easily seen that R;(x) is related to the hyperbolic field by

da

Rj'a

= hlj, (39)

while the condition that the point P, where PJ = g(u), lies on the diagonal requires that

dg Cl?)j

R
E-- 2,5_}7;’/111 cot (k= 2y). (40)

The second junction condition (35), where m; is given by (22) and (24) with R = R; and
R, = Ry—g, is satisfied if R, Ry and g are related by

2¢° 8(3-¢%
B 5o BT o

whence the condition (25) for the parabolic net requires that g lies in the range

1<g<43 (42)
and satisfies the end condition ~ g=4/3 when A;j=1i= (43)
at H (figure 4), where EH touches the envelope KIH with R, = 0.

Thirdly, the shear continuity condition (37) can, by using (7), (22), (24) and (41), be

expressed as
1 + tany 3+g2

Pu P2 2g

(44)

where from figure 6, (45)

Tisure 6
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Then, by using (41) in (39) and (40) and by using (45) in (44), we can eliminate R;, R, and y
to obtain the three equations

dA;  3(g?—-1 j
d dv 3—g°
di = _hzjﬁﬁj“’ln—z?écot(%n—/\l)’ (47)

-P; hy3pay du 2¢ -

2
1 + hoy dvy  3+4g (48)

We now note that the hyperbolic net given by (18), (19) and (21) is completely determined
if f,(u) is known and the junction is then determined if vj(«) is known. Thus the junction values
Ay, kag, Boyy pry and pyy in (46)—(48) can be regarded as functions of f, and vj, and we have three
equations (46), (47) and (48) corresponding to three basic unknowns f,(«), v5(«) and g(«).

7. EVALUATION OF THE STRESS FIELD AND THE COLLAPSE LOAD
Equations (46)—(48) can be recast in simpler form by noting first that, since
dAs/du = 3A[ou + (0A[0v) dvy/du
on the junction, it follows from (5) and (46) that

1 ilzj d?)j —3(g2——1)
— ki 49
P11 hyypaydu 2g% 7 (49)

and then equations (48) and (49) can be used to obtain separate expressions for 1/p;y and dvy/du.
We can then use (5) and (18) to express 1/p,; and 1/p,; in terms of f,(u), s;j and sy to give finally

_ 4
do; hy; (3 +4 ), (50)

du =~ fo(—vy)cossyy \ 4g3
d 3+t 3—g?
T-= hlj(—ét—gé-) tanslj—klj(?f) cot (r—2Ay), (51)
_ tanhsy +x(g)
f2(u) - 1+X(g) tanhszj’ (52)
2 4g”

Equations (50)—(53) together with the end conditions (20) and (43) and the net equations
(18), (19) and (21) give a determinate problem for finding the hyperbolic net in AFEDA
(figure 2) and also g(0), whence the collapse load follows as quoted earlier in (3).

The main strategic difficulty in the numerical evaluation of the solution over a fine mesh is
that the net (18) is only easily computed by starting from A (figure 2), whereas the boundary
condition (43) for g(u) relates to the other end E of the net. This difficulty was overcome by
starting with trial values of g(0) to obtain a close estimate of most of the net, and then by using an
iteration strategy. Details of the numerical method used for the present solution are outlined in
the appendix A and here we state only the main features. For given g(0), the net calculations
marched out from # = 0, v = 0 at A with  increasing in equal steps Au, while for each u, the
calculations marched out from » = —y on the edge AB in equal steps Av = A in increasing v.
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The calculations were carried out on the Cambridge University computer Titan with its normal
precision of about eleven decimal digits. A finest mesh size of Au = Av = 0.005 was used, and
also coarser mesh sizes of 0.01 and 0.02 in order to estimate the errors due to finite mesh size.

The most significant feature of the calculations with trial g(0) is the behaviour of g(x) which is
illustrated in figure 7 by the divergence of the broken curves from the full curve given by the final
solution following an iteration process described later. This divergence results from the domi-
nance of the last term in (51) when the end condition (43) that g— /3 as A;—> 1= is not satisfied
exactly. Thus if the trial g(0) is too large, then g > /3 with dg/du > 0 before A; = tw and g— o0
as Aj— }r with increasing u. On the other hand, if the trial g(0) is slightly too small, then g < /3
with dg/du < 0 just before A; reaches }n and an accelerated decrease in g(u) takes place down
to g = 1 when from (46), A; reaches a maximum and the desired condition A; = twat E (figure 2)
is not attained.

T

174
/

gl

170

1.66

162 I I ! ! 1 1 1 )
0 04 08 1.2 u 16
F1Gure 7. Variation of g(u) with u for g(0) = 1.638 (curve 1); 1.637 (curve 2); 1.63655 (curve 3); 1.636521
(curve 4); 1.6365 (curve 5); 1.636 (curve 6); 1.635 (curve 7).

It will be seen from figure 7 that a significant divergence of g(«) from the stable exact solution
takes place later as g(0) approaches the exact g(0) from above or below. But with a finite step
size Au involving a finite step in Aj, the final part of the net extending about one step from E
cannot be reliably evaluated on this method. However, the results for trial g(0) gave the very
close bracket of 1.636514 to 1.636530 for the exact g(0) with reliable calculations up to z = 1.525
for the finest mesh size Au = 0.005.

We now note that dg/dA; can be found from (46) and (51) and then the end condition (43) can
be used to obtain the integral equation

2¢(3—g%)sinyr = fw (3+g%) (tan syy) sin ¢ di, (54)
where Y =in—-Ay (55)

so that ¢ decreases along the junction from 1 at A to zero at E.
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Starting with ¢ = /3 aty = 0, equation (54) enables g(«) to be found numerically as a function
of uif ¢ and s,5 are known functions of . Now the results for trial g(0) close to the exact g(0) did
not exhibit any significant instability in junction properties other than g(u) over the range of
calculations. In particular, for both the close upper bound g(0) = 1.636530 and the close lower
bound g(0) = 1.636514, the values of A; and s,; remained stable with small third differences as u
increased for # = 0(0.005)1.525. Further, the changes in Aj and s,; with g(0) for given « were less
than one-fifth of the change 0.000016 in g(0) over the whole calculated range of #; in contrast,
for u = 1.525, the change in g(u) was about 500 times the change in g(0). These results indicated
that the calculated values of A; and s,; for any g(0) in the bracket 1.636514-1.636530 would be
close estimates of A; and s,3 for the exact solution over the range # = 0(0.005)1.525. Also, since
the exact solution will be stable up to A; = }=x, ¢ = 0, close estimates of # and s,5 for ¢ = 0 can
reasonably be obtained by extrapolation which involves only about one further step 0.005 in .

The preceding observations led to the following method for the final evaluation of the exact
solution. First, the mean value of the above bracket, namely g(0) = 1.636522, was used as a trial
£(0) to evaluate the net and junction properties for # = 0(0.005)1.525 and extrapolation was
then used to find (i) the values of ¢ and s, at « = 1.53, (ii) the value u = uy (about 1.53016) for
¥ = 0, and (iii) the value of 5,5 at # = uy;. The values thus found for s;; and ¥ were then used in
a numerical evaluation of equation (54) to obtain values of g for « = 1.53(—0.005)0, starting
from g = /3 when ¢ = 0 at u = uy. A succession of forward (¢ increasing) and backward
(u decreasing) evaluations were then made in which (a) the values of g(¢) obtained in a backward
run from (54) were used as input in a forward run with the earlier equations, excluding (51), to
obtain revised values of ¢ and s;; for ¥ = 0(0.005)1.53, followed by extrapolation to obtain
revised values of # and s;; for ¥ = 0, (b) the revised values of ¢ and s;; were used in a backward
run of (54) to obtain revised values of g (u). This process was stable with rapid convergence giving
no changes within the accuracy of the calculations after the second backward run. This pro-
cedure was also carried out for step sizes Au = 0.01 and 0.02 in order to estimate the effect of
finite step size, and a comparison of the results indicated that the values of g, ¥ and s;; were
probably correct to 1 x 108 for the smallest step size Au = 0.005. In particular, all three step
sizes agreed to seven significant figures in giving g(0) = 1.636521, leading to the result (3) given
earlier for the collapse pressure.

For Au = 0.005, the values of g(x) obtained in the last run of the above iteration process were
used in a final forward evaluation of all the main net and junction properties. Also, as an overall
check on accuracy, the total load on the combined parabolic and hyperbolic region ACEDA
(figure 2) was computed and compared with the calculated total shear reaction along ADE;
these should be equal since there is no shear on AC and CE. The fractional error between the
calculated values of total load and shear reaction was satisfactorily small at less than 1 x 10-8,

Some features of the hyperbolic net are first that for given # and increasing v, the values of &,
decrease monotonically from unity on the edge to 4,5 on the junction, while #,, s,, s, increase
monotonically from zero at the edge to 4,4, 513, o5 respectively on the junction. Secondly, in
rounded values, as u increases from zero at A to 1.530 at E, the values of f;(#) decrease smoothly
from 1.155 at A to 1.081 at E, while junction properties vary smoothly and monotonically with
u as follows: (i) the distance along the junction from A increases from zero to 1.409 at E, (ii) v
decreases from zero at A to —0.753 at E, (iii) Ay, v, Ay, $y3, 55 increase from zero at A to i,
0.448, 0.723, 0.694, 0.305 respectively at E, and (iv) A,; decreases from unity at A to 0.712 at E.
Some further results for the net will be given later in comparison with upper bound solutions.
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Having evaluated the properties of the hyperbolic netin AFEDA (figure 2) and of the junction,
the calculation of the parabolic net in ACEFA is simple, based on the property that its straight
trajectories are tangents on the junction to the trajectories # = constant in the hyperbolic net.

To complete the stress field in the octant ABC (figure 2), we need to find any one statically
admissible stress field in the corner region DEB, which remains plane and undeformed in the
associated mechanism. The conditions to be satisfied by this field are: (i) equilibrium with
uniform pressure, (i) —1 < my, m, < 1, (iii) EBis aline of symmetry with zero shear and twisting
moment, (iv) ED is a given principal moment trajectory with normal moment m, = — 1 and
(v) continuity of shear force across ED with the hyperbolic field in AFEDA (figure 2). There are
no necessary boundary conditions for the stress field on the edge DB. All the preceding conditions
will be satisfied if we can find a hyperbolic field of the type (10) in DEB, with net of the form
illustrated in figure 8, where EB is the straight trajectory # = 0 while ED is the trajectory v = 0.
For analysis of this field, we define the value of u, constant along a typical trajectory LM, by
u = arc length EM, while the value of v, constant along PN, is defined by v = EN; also we
measure s, from EB and s, from ED. With these choices,

k=1, s5,=0 when v=0,
} (56)
hy=1, 5;,=0 when u=0,
and the given curvatures of EB and ED require that
1/py =0 when u =0, (87)
1/py = F(u) when v=0, (58)

where F () is the variation of the curvature of ED with distance s, = # along ED, and is known
from the calculations for the adjacent hyperbolic net in AFEDA (figure 2). We note that since
the positive directions of # and v convenient for the corner field (figure 8) are the reverse of those
convenientin AFEDA (figure 3), the signs of p,, p, are also reversed to conform with equation (5);
in particular, 1/p, = F(uz) > 0 on DE for the corner field, while 1/p; = —F(x) < 0 on DE for
the field in AFEDA.

Ficure 8. Moment net in the undeformed corner region DEB.

The use of (56)—(58) in the general form (10) leads to

hy = cosh s, + F(u) sinh sz,} (59)
hy = COS sy,

which with use of (5) and (11) enables all properties of the net to be evaluated without difficulty
by marching out from # = 0 on EB and v = 0 on ED. This field exists with %; > 0, £, > 0 over

the whole region and is statically admissible.
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We close this section by noting some general features of hyperbolic fields for uniform pressure
loading. The basic equations are (10) and (11), and the field will exist provided £, > 0, £, > 0.
Now on a hogging trajectory where v is constant and s, is distance along the trajectory, it follows
from (10) that A, must change sign when s, increases or decreases by =. Hence the field is limited
in spatial extent in the s, direction by the condition that no hogging trajectory can have a length
greater than = in our non-dimensional units. At either boundary of the field in the s, direction,
the hogging trajectories will be tangential to an envelope curve. This is illustrated in figure 2
where the edge AD is the special case of a straight envelope; it is of course possible to continue the
field below AD by a similar ‘mirror image’ net, but there will then be a discontinuity of shear
force along AD where both fields will exert a downward shear force of —4/p; on AD. In general,
the bounding envelopes of a hyperbolic field for uniform pressure will only form part of a statically
admissible field at a supported edge. The hyperbolic field for uniform pressure may also be
limited in spatial extent in the s, direction by the condition %, > 0 depending on the signs and
relative magnitudes of f;, f, in (10). Thus for the corner net in DEB (figure 8), the given values
of F'(u) as the curvature of DE suffice to define completely a net between a straight trajectory EB
continued at either end, and a trajectory # = constant through D. In fact, '(x) > 1 for the curve
DE of our solution, whence from (59) the net could continue indefinitely with s, > 0 beyond the
corner in the direction EB (though of limited width in the s, direction); but the net would neces-
sarily cease when A, = 0 for sufficiently large negative s, in the reverse direction BE. On the other
hand, for a different curve DE with a curvature satisfying — 1 < F(u) < 1, a net of the form (59)
could continue indefinitely in either direction along EB produced. In the present problem, apart
from the given envelope AD for the netin AFEDA (figure 2), the hyperbolic nets in both AFEDA
and DEB lie well inside the ranges of existence of the nets as governed by %; > 0, £, > 0. Nor is
there any reason to expect that these conditions for existence of a hyperbolic field will lead to
non-existence of exact solutions. Thus in our problem where a corner portion DEB and its mirror
image in EB remain undeformed, the condition that arc DE < §= for field existence simply
means that we must expect the exact mechanism to extend at least near enough to the corner to
satisfy this condition; in fact, it is very comfortably satisfied since arc DE = 0.69 in our solution.

A second general feature of hyperbolic nets for uniform pressure loading is that although the
general form (10) contains four arbitrary functions, only two arbitrary functions remain after
definite choices of ¥ and v. In general, given conditions along only two boundaries can be satisfied
by the net in any particular problem. Thus the hyperbolic net in DEB (figure 8) is completely
determined by the given sagging trajectory EB and the given hogging trajectory ED, while the
hyperbolic net (18) in AFEDA (figure 2) contains only one arbitrary function after satisfying the
one boundary condition that the given edge AD is an envelope of hogging trajectories.

8. EVALUATION OF THE MECHANISM

As described earlier, the mechanism in an octant of the plate consists of a developable surface
for the region ACEFA (figure 2) and an anticlastic surface for the region AFEDA, while the
corner region DEB remains undeformed in its original plane. We commence with the considera-
tion of the anticlastic surface where we regard the small deflexion w as a function of the coordinates
(u,v) defined earlier for the associated hyperbolic stress field. We use the notation

£ = Qw[hu, 7 = Qw[hydv, (60)

18 Vol. 277. A.
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for the component slopes of the mechanism and the component curvatures are then given by

__% 9
= oy
__o ¢
Ko = =15 oy (61)
1 2w £ 7
Kyw = —7 7 7= +—+—
hyhyQudv ~ py  py

on small deflexion theory with sagging curvatures positive.

Since the coordinates (,v) were defined as specifying the principal moment trajectories, it
follows from the normality rule that these trajectories represent also the lines of curvature of the
mechanism, with «,, k, as principal curvatures. Thus the mechanism must satisfy «,, = 0, and
from (61), (60) and (5), this condition can be expressed in either of the equivalent forms

8E[v = uy, (63)
where t1=lufpy,  pa = hofps (64)

All relevant properties of the net can be assumed known from the calculations for the stress

field and we note in particular that
U1 <0, py>0 (65)

in AFEDA, and from (5) and (64) that
Op[Ov = — 022 [0udv = — OpyfOu. (66)

The preceding equations with later boundary conditions enable the component slopes and
the deflexion to be found numerically, but the subsequent evaluation of the curvatures from (61)
would then involve the relatively inaccurate process of numerical differentiation. To avoid this,
we introduce the notation

Cu = MKy &= hyKy, (67)
whence from (61) and (64) we find
Cu = — O&[ou—p,7, (68)
8o = — 0[O0 —pyé, (69)
and then from (68), (69), (62), (63), (64) and (66) it is easy to verify the relations
08u/Ov = 116 (70)
080 = paCus (71)

which can be used for a direct evaluation of {,, ¢, and hence the curvatures.

The numerical evaluation of the anticlastic portion of the mechanism was carried out in two
stages, commencing with the region DEF (figure 2). The basic boundary condition on the
trajectory DE, where v = constant = vy (say), is

w=0 when v=uy, (72)

and then from (60) and (62) wefind £ = 0,7 = constanton DE. Now the deflexion w is notionally
very small, but since its overall magnitude is arbitrary and the governing equations are linear
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in w, it is convenient for numerical evaluation to take # = 1 on DE. This is equivalent to expres-
sing deflexions, slopes and curvatures as multiples of €L,, ¢ and ¢/L, respectively, where € is an
arbitrary small positive number. The boundary conditions for the slopes are thus

£E=0, =1 when v=uvyg, (73)
and then from (68) we find
§,=—/ when v=uy (74)

as a boundary condition for curvature. The other basic boundary condition in DEF is the
junction condition (36) on EF, whence from (67),

¢, =0 when v=uu). (75)

For known net properties, the differential equations (70) and (71) together with the boundary
conditions (74) and (75) give a determinate problem for ,, {, and there is no difficulty in finding
these quantities numerically over a fine mesh in DEF by marching out from DE. The slopes and
deflexion can be evaluated in the same programme by the numerical procedure outlined in
appendix A. The calculations gave k, > 0, «, < 0 in agreement with the normality rule for the
associated hyperbolic stress field. This agreement can be deduced without calculations as
follows, direct from the governing equations. We consider the segment of any chosen trajectory
v = constant between DF and EF, noting that « increases from DF to EF within DEF. Let {m(v)
be the least value of ¢, on this segment. Then if {n > 0, we find (a) from (71), (65) and (75)
that §, < 0 on the segment with the equality sign only on EF, (§) from (70) and (65) that
0&,/0v > 0 atall points on the segment, whence d{m/dv > 0. Thus if {m is positive on any segment,
it is monotonic increasing with v, whence {m > 0 and ¢, > 0, {, < 0 for all larger v in DEF. But
from (74) and (65), {m > 0 on DE and it follows that §, > 0, {, < 0 everywhere in DEF, with
¢, monotonic increasing with v on a trajectory # = constant, and ¢, decreasing as « decreases on
a trajectory v = constant. Lastly, we note that £, > 0, %, > 0, while from (5), (64) and (65),
Ohy[ov = hypy < 0, Ohy/Ou = hypy > 0 in DEF; hence from (67), «, > 0, k, < 0 in DEF with «,
increasing monotonically on a trajectory # = constant as v increases from DE to EF, while «,
decreases on a trajectory v = constant as # decreases from EF to DF.

We consider next the determination of the anticlastic surface in the region ADF (figure 2) and
we note first the following properties of the net on the edge AD

=1, hy=0, p,=—p,=fo(u) when u+v=0, (76)

which follow from earlier equations of § 4.
The basic boundary condition on AD is that

w(u, —u) = 0, (77)

with the resulting condition of zero slope along the edge, namely

E(u, —u) =0, (78)
which after differentiation and use of (63), (76) and (68) leads to
gu(u, _u) =0 (79}

as the boundary condition for curvature on the edge AD.
18-2
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Also, on the edge AD where v = —u, we note for use in evaluating slopes, that
dy/du = On[ou—0y[dv = &,
by virtue of (62), (69) and (78), and since # = 1 at D by continuity, we find

W, =) =1+ [ L -w)du (80)

The basic boundary condition on DF is that the deflexion is continuous across DF and equal
to that found from the calculations for the mechanism in DEF. It follows, since all net properties
are continuous, that the slope 7 tangential to DF is continuous, and then since the condition
£ = 0 holds on both AD and DE from (78) and (73), it follows from (63) that £ is continuous
across DF and from (69) that ¢, is continuous across DF. Thus the boundary condition on DF for
curvature is that

§,=DP(v) when u=—uvpg, (81)
where @(v) is a function known numerically from the calculations for the region DEF. Lastly,
we again have the curvature boundary condition (75) on the junction AF.

F
P
o i
__,—-—’T’”/\
A P D

Ficure 9

To determine §,, £, in ADF, we have the three boundary conditions (75), (79) and (81) which
at first sight appear too many for the two first order differential equations (70) and (71). How-
ever, the conditions (75) and (81) do not operate together in determining the values of ¢, §, at
any given point in ADF. The differential equations (70) and (71) are of hyperbolic type with
effects on a boundary propagating along the characteristics which are here the net trajectories
u = constant and v = constant. Thus, referring to figure 9, equations (70) and (71) and the
boundary conditions (79) and (81) suffice to determine the values of {,, &, in the sub-region PFD
and these values are unaffected by the boundary condition (75) on AF. Then for the sub-region
PQF we again have only two boundary conditions, namely (75) on QF and given §, on PF as
determined by continuity of {, with the field in PFD; this problem is of the same type as that for
the earlier region DEF and has a unique solution giving, in particular, values of {, on QP. Then
for AQP, the problem is similar to the original problem for ADF, and hence there is a unique
solution in ADF corresponding to a succession of sub-regions of the types PFD and PQF. How-
ever, although analytically the determination of the mechanism in ADF is most logically regarded
in terms of an infinite sequence of sub-regions, there is no difficulty in obtaining a numerical
solution in a direct manner by marching out from DF with « decreasing in steps, where at each
step the evaluation of mechanism properties is carried out for the full range of v from the edge to
the junction (see appendix A). The calculations gave k, > 0, «, < 0 in ADF in agreement with
the normality rule for the associated hyperbolic stress field. Again, this result can be deduced
direct from the governing equations and the boundary conditions in an analogous manner to
that given earlier for DEF, save that () the argument is applied to the successive sub-regions of
figure 9, and (b) the roles of , v and of {,, {, are interchanged in the argument for a sub-region
of the type PFD.
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An interesting result of the calculations for the mechanism in the anticlastic region AFEDA
(figure 2) is the very rapid decrease of §, and — ¢, as u decreases from D to A in the region ADF.
Thus ¢, is a maximum on the junction for given , and starting from about 0.2 at F, the junction
values of {, decrease to about 0.002 by « = 0.377 corresponding to Q in figure 9, and then to
order 1071% by # = 0.1 and to order 10~° by u = 0.025. Similarly, the maximum values of —¢,
occurring on the edge AD and starting from about 0.8 at D, decrease to about 0.03 by u = 0.377
and then to order 10-8 by # = 0.1 and to order 10~ by # = 0.025 (note that  is distance from A
along AD). In agreement, it is shown in appendix B that {,, {, are not analytic functions of u at A,
since they decay to zero faster than any finite power of u as u — 0 at A. Since £, is of order unity it
follows that «, is similarly very small near A. But #, = 0 on the edge AD where «, is infinite
except at A; however, the smallness of {, implies that «, will be very small near A exceptin a very
narrow band near the edge. Moreover, from (68), (69) and (80), the slopes are related to the
curvatures through ¢, {,, and similarly for the energy dissipation over an element of area which
is (K, —Ky) byhodudv = (hy &, — Ry &) dudo. It follows that so far as slopes, deflexion and energy
dissipation are concerned, the portion of the mechanism near A in ADF approximates very
closely to a plane surface through the edge. This is also illustrated by the curve in figure 10 for
the variation of the hinge angle along AD which becomes effectively constant to within 0.3 9,
foru < 0.4.

12r

11

hinge angle

10 1 1 ! 1 1 1 1 1
0 0.2 04 06 08
distance from A on AD, u

Ficure 10. Variation of hinge angle along AD.

We note from (74) that {, = —x; on DE and is about 1.13 at D, while from (79), {, = 0 at D
on AD, so there is a discontinuity in {, across DF at D. Further, since g, ¢, is continuous across DF
it follows from (70) that there is a constant discontinuity of about 1.13 in ¢, across DF; and since
. = hyk,, there will be an associated discontinuity in the circumferential curvature «,, but it
will not be constant since %, varies along DF. The discontinuity is evident in figure 11, which
gives the variation of «, along the junction and along DE, noting that x,, = 0 along AD, while
foru < 0.4, the junction values of k, are too small to show in the figure. Within the region AFEDA
(figure 2), «, increases monotonically with » for given , so that figure 11 gives the extreme values
of k,, in the anticlastic surface.

The unique solution obtained for the anticlastic surface in AFEDA determines in particular
the values of the deflexion w and the slope # on the junction. The mechanism in the parabolic
region ACEFA (figure 2) can then be defined geometrically as the ruled surface formed by the
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continuation in the v-direction of tangents to the anticlastic surface along the junction. This
gives continuity of w and the component slope %, and since the slope along the junction, at an
angle to the v-direction, is continuous since w is continuous, it follows that the other component
slope £ is also continuous. Further, if s, # denote directions along and normal to the junction, then
the continuity of slopes gives continuity of the curvature components &, k., while the curvature
component k,, = 0in the anticlastic surface on the junction is continuous with the zero curvature
component along a generator of the ruled surface. The continuity of k,, «,, and «,, where v is at
an angle to z and s, gives the same Mohr’s circle for curvature in both surfaces, so that the principal
directions of curvature and the principal curvatures are continuous across the junction. We can
now use these continuity conditions, in conjunction with known properties of ruled surfaces
(Weatherburn 1930), to verify that the normality rule is satisfied in the parabolic region ACEFA,
where we shall again use the coordinates (o, #) of §5.

16

| \

08

T ,

i
0 08 u 16
Ficure 11. Circumferential sagging curvature on (1) DE, (2) junction AFE.

It is a known property of a ruled surface that along a given generator, the Gaussian curvature
Ky K 1s inversely proportional to the fourth power of a distance function which is here the length
R = IQ of figure 4. But the Gaussian curvature of our ruled surface is zero on the junction since «,
is there continuous with the zero junction value of k, in the anticlastic surface. It follows that the
Gaussian curvature is zero everywhere in the ruled surface which is therefore developable with
principal curvatures k; = K,, Ky = k5 = 0. Secondly, from a known property of a developable
surface, the product Rk, is constant along a given generator, and since k, = &, > 0 on the junc-
tion, it follows that k, > 0 everywhere in the surface. Hence the mechanism in ACEFA has
principal curvatures k, > 0, k4 = 0, which satisfy the normality rule in relation to the associated
parabolic stress field of principal moments m, = 1, —1 < mp < 1.

Since there is no twist along a generator of the developable surface, the component slopes of the
surface along and normal to a given generator are constant along the generator and equal to the
slopes 75, £; respectively of the anticlastic surface on the junction. Now from (73) and (78) we
note that £; = 0 at the ends E and A of the junction; it follows that the circumferential slope is
zero along both the extreme generators AG and EH, where the surface will thus join similar
surfaces in adjacent octants with continuous slopes. On CH, the adjacent parts of the mechanism
join in a sagging hinge of angle which increases monotonically from zero at H to about 1.67 at C.
The deflexion on CH is plotted in figure 12 where it is seen that it does not differ much from
a linear variation with distance corresponding to the generator EH produced. As the circum-
ferential curvature «, in the developable surface is the same on the junction as that given in
figure 11 for the anticlastic surface, and since Rk, is constant along a generator, it follows that
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(a) k, is infinite at H where R = 0, (b) «,, is discontinuous across GF, and (¢) «, is very small near
AC where the developable surface approximates closely to a plane.

The relative smallness of the curvature in the region ACGFDA (figure 2) is also indicated by
the fact that this curvature contributes only about 2 %, of the total energy dissipation in the
mechanism. This compares with about (i) 46 %, from the curvature in the region DFGED,
(ii) 4 9% from the sagging hinge CH, (iii) 27 9, from the hogging hinge AD, and (iv) 21 %, from
the hogging hinge DE. It is also of interest to note that the curvature in the anticlastic region
AFEDA contributes only about 4 %, of the total energy dissipation in comparison with about
44 9%, from the curvature in the developable region ACEFA.

172

180

1.88

1.96] ! | 1 !
) 008 016
distance from C along CH

Ficure 12. Deflexion on CH (full curve) compared to deflexion on generator EH produced (broken line).

9. COMPARISON OF THE EXACT SOLUTION AND SOME KNOWN
UPPER BOUND SOLUTIONS

The exact solution will now be compared with three known upper bound solutions having
mechanisms of regional pattern shown in figures 134, 4 and ¢ for one octant of the plate. The
lettering in these figures has been chosen as far as possible so that the different regions of the
mechanisms are generally similar in type to those of the exact solution with the same lettering in
figure 2. In all cases, G is the centre of the plate while B is a corner and AB is half of one side of
the plate. We note that in all solutions, a corner portion DEB remains undeformed in its original
plane and we describe below the shape of the deforming region for each mechanism.

Mansfield (1957) extended the scope of upper bound solutions for a variety of problems by
using the calculus of variations. In particular, for the present problem he proposed the pattern
of figure 13 a, where (i) the part ACD rotates as a rigid leaf about the edge AD, with C deflecting
to C’ (say), and (ii) the portion DCE deforms as part of a general conical surface with base curve
DE and vertex C’. The calculus of variations was used to find the shape of the curve DE giving
the least collapse pressure for the pattern.
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Wood (1961) employed the pattern of figure 13 5, where DE is a circular arc of centre H and is
tangential to the edge at D. The plate deformation is (i) the part ACHD remains plane and
rotates as a rigid leaf about the edge AD, with H deflecting to H' (say), and (ii) the part DHE
deforms as part of a circular cone with base curve DE and vertex H’. The ratio CH/CB was
chosen to give the smallest collapse pressure for this pattern of deformation.

CH
@ g ) I ©

A D B A D B A D B

Ficure 13. Regional patterns for upper bound solutions: (2) Mansfield; () Wood;
(¢) Mansfield-Morley.

TABLE 1. COMPARISON OF EXACT AND UPPER BOUND SOLUTIONS FOR A GLAMPED
SQUARE PLATE UNDER UNIFORM PRESSURE

exact Mansfield-Morley = Mansfield Wood
Do L?[mg 42.851 42.880 42.895 43.852
AD/|AB 0.46001 0.44513 0.44161 0.39596
CE/CB 0.84225 0.84075 0.84061 0.82308
CH/CB 0.09386 0.06672 0 0.39596
CG/CB 0.03899 — — —

Morley (1965) extended Mansfield’s solution by taking the vertex of the cone off-centre
at H in plan in figure 13 ¢; this introduced an extra parameter CH/CB for use with Mansfield’s
shape of DE and this ratio was chosen to give the smallest collapse load. Following Wood (1969),
we shall refer to this mechanism as the Mansfield-Morley solution.

All three upper bound mechanisms are qualitatively similar in that they contain a rigid leaf,
a conical surface and an undeformed corner region. The exact mechanism is more complex in
that the deforming portion consists of a more general developable surface and an anticlastic
surface. However, there is a general qualitative similarity between the exact mechanism and the
upper bound mechanisms, noting that (i) the anticlastic region is relatively narrow, (ii) there is
a discontinuity of circumferential curvature across GFD (figure 2) in the exact mechanism and
across HD in the upper bound mechanisms, and (iii) the exact mechanism approximates closely
to a plane near AC. In particular, there is a marked similarity between the exact mechanism and
the Mansfield-Morley mechanism.

For the present comparison, numerical results for the upper bound mechanisms have been
recalculated to the same accuracy as the exact solution and rounded results are given in table 1.
This table lists the collapse pressure and some relevant dimensions of the regional patterns for
both the exact (figure 2) and upper bound (figure 13) mechanisms. It is seen that the Mansfield
and Mansfield-Morley solutions give very close estimates of the exact collapse pressure, within
about 0.1 %,, while Wood’s simpler solution gives a value only about 2.3 9, high.

As indicated by the ratios AD/AB and CE/CB in table 1, the exact mechanism extends nearer
the corner than any of the upper bound mechanisms. Though this extension is very small in
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relation to the Mansfield and Mansfield-Morley mechanisms for which the arcs DE lie close
inside the exact arc DE along its whole length, within normal distances of 0.0026 AB and
0.0022 AB respectively.

10. THE EXACT SOLUTION AS THE LIMITING CASE OF SEQUENCES OF
UPPER AND LOWER BOUND SOLUTIONS

The theory of limit analysis for plates implies that an exact solution should correspond to the
limiting case of at least one continuous sequence of upper bound mechanisms and at least one
continuous sequence of statically admissible stress fields forming lower bound solutions. Such
sequences can be defined for the present problem in terms of results for trial g(0) discussed earlier
in § 7. We note that for any given g(0), the associated pressure is given from (1) and (2) by

pL2[my = 16[g(0)]? (82)
and that the hyperbolic field and associated junction and parabolic field can be evaluated by

marching out from A (figure 2) to obtain a stress field which is certainly statically admissible
while g(u) remains in the range 1 < g(u) < 4/3 of equation (42).

C

A D L B

Fioure 14. Regional pattern for lower bound solution.

Consider a trial g(0), e.g. 1.635, for which the pressure p of equation (82) is a close lower bound
to the collapse pressure . of equation (3). Then as u increases in figure 7, we see that g(u) at first
decreases to a minimum value > 1 and then increases to a maximum value less than 4/3, followed
by a rapid decrease which will continue at least to g = 1 at u = u; (say). Thus for 0 < u < u,
there is a statically admissible stress field corresponding to a moment net over a region AGHEDA
of the type illustrated in figure 14, where HE = 1 and MN represents the maximum value of g(u).
For clarity, figure 14 is not to scale for a close lower bound since, if for example g(0) = 1.635, the

19 Vol. 277. A.
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true angles NMB and EHB are less than 4°. Now the calculations and analysis indicate that for
any lower bound g(0) between 1.635 and the exact g(0), the length HB is about 1.4 < /3; hence
to complete a statically admissible stress field in the octant, we consider first the sector LHB
(figure 14) where, using polar coordinates r, 6 with origin H, we specify the simple radial field
of principal moments m,, m, given in our non-dimensional units by

my=1 m,=1 —%ﬂ,} (83)

9o = 0, gy = —2r,

which is statically admissible since 0 < 7 < 4/3, and satisfies the necessary stress continuity condi-
tions across HE. Secondly, in the region DEL (figure 14) we can, as for the exact solution, find
a hyperbolic field of the type (59) having EL and DE as given principal moment trajectories.
This completes a statically admissible stress field for the typical octant, noting that there is unit
normal moment, zero twisting moment and zero shear force along both AC and CB to satisfy
continuity conditions with similar fields in adjacent octants of the plate. Such a statically admis-
sible stress field will exist at least for all pressures p given by (82) when g(0) lies between1.635 and
the exact g(0). Hence if we consider g(0) increasing continuously in this range, there will be
a continuous sequence of lower bound solutions in which the angles NMB and LHB of figure 14
decrease steadily to zero to give the exact stress field as the limiting case for the exact g(0) and
b = Pe
C

A D B

Ficure 15. Regional pattern for upper bound solution.

Consider next a value of g(0), e.g. 1.638, for which the pressure p of equation (82) will be a
close upper bound to the collapse pressure. For such g(0) with increasing « in figure 7, we see
that g(u) at first decreases to a minimum value > 1 and then increases steadily to reach the
value 4/3 at u = u, (say). Then for 0 < u < u,, there is a statically admissible stress field corre-
sponding to a moment net over a region of the type ACHEDA shown in figure 15, where HE = /3
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while ER is a circular arc of centre H. We note that for any g(0) between 1.638 and the exact
g(0), the angle EHB is less than 4°. Now the analysis of § 8 for the exact mechanism can be
equally applied to find a surface of similar type which satisfies w = 0 on ADE and the normality
rule in relation to the moment net in the region ACHEDA of figure 15. Then if H deflects to H' in
this surface, we add part of a circular cone of vertex H’ and base curve ER to complete the
mechanism in the octant, with the corner portion DRB remaining undeformed in its original
plane. There are similar surfaces in adjacent octants giving a sagging hinge on CH and continuity
of deflexion and slope across AC and HR.

It remains to show that the application of the upper bound theorem to the above mechanism,
derived for a given g(0), leads to the value of p given by (82). For this purpose, we shall first show
that the mechanism is an exact mechanism for loading by the uniform pressure p plus a line load
along ER; and to do this we need the associated stress field. Now from the above definition of the
mechanism in ACHEDA (figure 15), it will in this region satisfy the normality rule in association
with the statically admissible stress field calculated for the trial g(0). Then in EHR, the simple
radial field (83) which gives m, = —1 on ER where r = 4/3, will be statically admissible for the
pressure p and satisfy (i) the necessary stress continuity conditions across HE and (ii) the
normality rule for the associated conical portion of the mechanism. Also, the combined stress
field in ACRDA and similar fields in adjacent octants will satisfy the necessary stress continuity
conditions across AC and CR. Lastly, in the corner region DRB we can use a hyperbolic field of
the type (59) with given principal moment trajectories DR and RB; this field will be statically
admissible for the pressure p and satisfy all necessary continuity conditions across DR and RB
except for a discontinuity of shear force along ER which can be balanced by an upward line load
of intensity 2./(1pm,) per unit length in dimensional units. We therefore obtain a mechanism and
stress field giving the exact solution for loading by uniform pressure p and the line load along ER.
But this line load does no work on the mechanism; hence the application of the principle of virtual
work using the mechanism and the equilibrium of the stress field with the loading, will give an
equation for p which is identical with that given by the upper bound theorem for this mechanism
and loading by pressure p only. Thus for uniform pressure loading, upper bound mechanisms of
the above type with pressures p given by (82), will exist at least for all g(0) lying between 1.638
and the exact g(0); hence if we consider g(0) decreasing continuously in this range, there will be
a continuous sequence of upper bound solutions involving mechanisms in which the conical
portion for region EHR shrinks steadily to zero angle to give the exact mechanism as the limiting
case for the exact g(0) and p = p.. Alternatively, as p — p. from above, the complete exact solution
for uniform pressure p. can be visualized for a typical octant as the limiting case of the exact
solution for uniform pressure p plus a line load along ER of total magnitude tending to zero as
p—>pe with ER - 0.

11, THE EXACT SOLUTION FOR A CLAMPED PLATE OF ANY REGULAR
POLYGONAL SHAPE UNDER UNIFORM PRESSURE

The preceding solution for the square plate is easily modified to cover the case of a plate of any
regular polygonal shape. Thus the qualitative description of the exact solution in §3 holds
generally for a regular polygon of z sides if figure 2 is interpreted as referring to a triangular
region with the angle ACB equal to =t/n; and the only changes in the earlier analysis are the
substitution of =/n for /4 in equations (40), (43), (47), (561) and (55).

19-2
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Numerical calculations for given z can be carried out as for the square plate, but were limited
in the present investigation to those necessary to find the collapse pressure p. for n = 3, 5 and 6,
and to comparisons with upper bounds corresponding to the Mansfield and Wood patterns of
figures 13 a, b with angle ACB = =/n. Rounded results for the collapse pressure when z = 3, 4,
5 and 6 are given in Table 2 where ¢ = AC is the radius of the inscribed circle of the polygon.

Table 2 shows that the upper bounds become increasingly accurate as z increases and that the
Mansfield upper bound is especially close to the exact collapse pressure. The Mansfield-Morley
upper bound (figure 13¢) would be even closer, but as indicated in table 1 for the square plate,
the gain in accuracy would be very slight.

Salient dimensions of the moment net (figure 2 with angle ACB = =/n) were necessarily found
in evaluating the exact collapse pressure. These indicated that for n = 3, 4, 5, 6, the deforming
part of the plate bounded by ADE (figure 2) in the octant, extends nearer to the corner B for the
exact solution than for either upper bound solution. However, the extension is very small in the
comparison with the Mansfield mechanism since, expressed as a fraction of AC, the normal gap
between the exact and Mansfield arcs DE is only about 0.01 for n = 3 and decreases with
increasing n to about 0.0004 for n = 6.

TABLE 2. VALUES OF p,a?/m, FOR CLAMPED PLATES OF REGULAR POLYGONAL SHAPE UNDER
UNIFORM PRESSURE (VALUES IN PARENTHESES ARE PERCENTAGE OVERESTIMATES FOR UPPER
BOUND SOLUTIONS)

number exact Mansfield Wood

of sides solution upper bound upper bound
3 9.6096 9.6568 (0.49 %) 9.9994 (4.19%)
4 10.7128 10.7237 (0.10 %) 10.9630 (2.3%,)
5 11.1899 11.1937 (0.039%) 11.3582 (1.5%)
6 11.4421 11.4438 (0.01 %) 11.5619 (1.09)

12. ON Woo0oD’Ss ARGUMENTS CONCERNING THE NON-EXISTENCE OF EXACT
SOLUTIONS IN LIMIT ANALYSIS FOR ISOTROPIC HOMOGENEOUS
PLATES OBEYING THE SQUARE YIELD CRITERION

In his examination of the problem of the square clamped plate under distributed load, Wood
(1969) emphasized the difficulty of satistying all the necessary continuity conditions across a
junction between a parabolic and a hyperbolic field; and he argued correctly that this is not
possible when the junction is a hogging trajectory. But the case of a junction which is not a
principal moment trajectory, as in the present solution, was dismissed by Wood on the grounds
that ‘mere inspection shows that shear could not be transmitted’ and that ‘radially increasing
negative moments in the fan encounter constant negative moments in the surround, which is
impossible’. The validity of these statements was questioned by Braestrup (1970) and in reply,
Wood (1970) conceded that a junction of this type would enable all continuity conditions to be
satisfied, but he commented that it would involve a sudden change in the curvature of the
trajectories which he considered ‘highly unlikely’. Such discontinuities in the curvature of the
trajectories occur on the junction AFE (figure 2) in the present solution and do not violate any
necessary stress or kinematic conditions; they seem likely to be a frequent feature of exact solu-
tions. Secondly, in his reply to Braestrup, Wood argued that in any case a discontinuity of shear
will occur across the junction where it crosses a diagonal of symmetry. But his argument involves
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an implicit assumption that the junction is a curve of continuous slope and will coincide in
direction with a hogging trajectory where it crosses a diagonal of symmetry. This is not necessary;
thus in the present solution, the hogging trajectory DE (figure 2) is orthogonal to the diagonal
at E, whereas the junction AFE intersects the diagonal at an angle of about 64°; but symmetry is
maintained with the junction curve for the whole plate having corners on the diagonals. How-
ever, it is true in the present solution that if r denotes a polar coordinate of origin H on the
diagonal, thereis a discontinuity at E between the value of the shear component ¢, in the parabolic
field above E and its value in the corner hyperbolic field below E. But this is a discontinuity
between the values of a shear force per unit length in regions which join only at a single point E and
there is no violation of equilibrium.

We turn next to the question of whether the existence of an exact solution is likely to depend
on the shape of the plate, as propounded by Wood (1965) in his original tentative hypothesis.
Here we restrict comment to practical shapes of plate with piecewise smooth boundaries and to
the common case where the two boundary conditions along any edge are () either the normal
slope is zero or there is a given distribution of normal moment along the edge, and () either the
deflexion is zero or there is a given distribution of the Kelvin—Tait shear reaction along the edge.
For such conditions, no reason is known for expecting difficulties associated with the shape of the
plate. Moreover, we note that an exact solution in limit analysis can be relatively insensitive to
the precise shape of the plate since an exact mechanism is not required, a priori, to extend to all
parts of the edge; and in undeflected regions the exact solution has only to satisfy the relatively
unrestrictive condition of a statically admissible field. Such insensitivity is especially likely for
clamped edges as illustrated in the extreme case by the well-known solution for a point load on
a clamped plate where the same conical mechanism and radial stress field gives an exact solution
for any shape of plate. A second example is the present solution for a clamped square plate under
uniform pressure. Thus at a typical corner, there is an undeflected portion consisting of DEB
(figure 2) and of D’EB in the adjacent octant, where D’E is the reflexion of DE in the diagonal CB.
The present solution remains exact if the edge portions DB, D’B are replaced by a clamped edge
along any curve joining D to D’ and lying within the area of existence of the field (59) forv > 0
(defining F'(u) = F(—u) to cover u < 0 in the adjacent octant). This area extends from DED’ to
infinity in the direction EB with a non-dimensional half-width, on either side of EB and measured
normal to EB, which increases from about 0.625 at D to unity at an infinite distance along EB
produced.

Wood (1969) introduced the related question of the existence of exact solutions for elastic—
plastic plates. In particular, he emphasized an observation by Kemp (1967) regarding the
difficulty of satisfying all boundary conditions in a method proposed by Parkhill (1966) for
finding an elastic—plastic stress field at the collapse load. The particular problem examined by
Parkhill was that of a square plate, simply supported on all edges and subjected to uniform
pressure. The exact solution for the corresponding problem in limit analysis, with yield governed
by the square yield criterion, was known; it involves a mechanism of pyramid shape with yielding
only on the diagonals, and Prager (1952) had given an associated statically admissible stress field.
Parkhill assumed that the stress field at collapse for an elastic—plastic plate would be a purely
elastic field in the triangular regions between the diagonals, and he claimed to have found a satis-
factory solution numerically. Later, Wood (1971) pointed out that Parkhill had not checked that
his solution satisfied the symmetry condition of zero shear on the diagonals, and on re-examining
the problem numerically, Wood found that all the necessary continuity conditions on the

19-3
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diagonals could not be simultaneously satisfied by an elastic stress field in the triangular regions
bounded by the sides and the diagonals. This seems correct, but Wood then concluded in parti-
cular that ‘ Even in the case where an ““ exact”’ rigid—plastic stress field and mechanism are known,
it is impossible to establish a corresponding elastic—plastic stress field by present-day rules of limit
analysis’ (italics as in Wood’s paper). This conclusion is unjustified; there is no rule of limit
analysis which requires that an elastic stress field should exist throughout a rigid region of a
mechanism. Instead, limit analysis imposes the infinitely less restrictive condition that the field
in a rigid region should be statically admissible. Nor, in elastic—plastic plate theory, is there any
reason to require that, at the collapse load, an exact solution must lead to a purely elastic stress
field throughout any region which is rigid in the corresponding rigid-plastic mechanism. Thus
in Parkhill’s problem, it is to be expected that a correct solution for an elastic—plastic plate will
exhibit plastic yielding over some areas of the triangular regions at the collapse load. It is of
course possible that there will be some purely elastic regions in an elastic-plastic plate at the
collapse load, e.g. near the centre of the sides in Parkhill’s problem. However, the junction
between any such elastic region and an elastic—plastic region is not predetermined; hence its
position will provide an extra parametric function for satisfying continuity conditions across the
junction, in an analogous manner to the role of »;(x) in the problem of the present paper. Thus
the investigation by Wood (1971) is not significant evidence for the non-existence of exact
solutions; in this context, it simply shows that one particular form of stress field cannot exist at
the collapse load in Parkhill’s problem.

Summing up, the specific difficulties leading to Wood’s doubts concerning the existence of
exact solutions in the present field are now seen to be without foundation; in particular, there is
no difficulty in satisfying the shear continuity condition across a junction between a parabolic
and a hyperbolic stress field, and there is no evidence that the total number of necessary boundary
conditions in a given problem will be larger than the number of available arbitrary functions
such as f,(«), g(x) and v;(«) in the present problem. Lastly, the scarcity of known exact solutions
can be simply explained by their probable complexity even in apparently simple problems, as
exemplified in the present problem and that of Fox (1972).

13. CONGLUSIONS

The present solution for a clamped plate of regular polygonal shape subjected to uniform
pressure is an example of the possible complexity of exact solutions in limit analysis for plates even
when the loading and edge conditions are apparently simple. Because of such complexity, known
exact solutions in this field are likely to remain scarce. However, a comparison of the present exact
results and those of Fox (1972) with earlier upper bound solutions provides evidence that
mechanisms much simpler than the exact mechanism can lead to upper bound estimates of the
collapse load within about 4 %, of the exact collapse load; this is certainly within the accuracy
with which the present theory of limit analysis for plates can be regarded as representing actual
conditions in reinforced concrete slabs under lateral loading.
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APPENDIX A. NUMERICAL METHODS USED FOR THE EVALUATION OF THE
MOMENT NET AND THE MECHANISM

For a given g(0), the governing equations for evaluating the hyperbolic net and the junction
are (18)—(21), (43), (50)—(53) and, as stated in § 7, the calculations marched out from A in equal
steps Az in u, while for each u, the value of v was increased in equal steps Av = Au starting from the
edge u+v = 0. After the first step in «, the range covered in v extended beyond the junction so
that junction values could be obtained by interpolation. Except for the first step in « and the
first step in v for given u, the integrals in (19) and (21) were extended step by step with the use of
a quadrature formula corresponding to a parabolic fit to the integrand at the current and two
previous mesh points. The successive stages of the numerical procedure were first, all properties
at A where u = 0, v = 0, were found from the governing equations. Secondly, for # and » both
small, the equations were used to derive the terms up to the third degree in power series for net
and junction properties, and these series were used to evaluate properties for the first step 4 = Au;
similarly, for all later u, leading terms of power series in (x+v) were derived and used to find
properties for the first mesh point # 4+ v = Av away from the edge. Thirdly, to extend the solution
by a step Au to a new current u, the procedure was (a) estimates of /,(u,v), g(«) and v;(u) were
obtained by extrapolation from the results for the preceding u; (b) s,(u, ), fo(u), hy(u,v), s1(u,v)
and A(u,v) were successively obtained from equations (19), (52), (18), (19) and (21), with
interpolation for junction values; (¢) dvj/du and dg/du were found from (50) and (51) and
together with values of these derivatives for « — Au, u — 2Au, were used in the parabolic quadrature
formula to obtain revised estimates of the current v;(xz) and g(u), while (18) was used to obtain
revised values of the current /,(u, v) ; (d) thestages (b) and (¢) were iterated with rapid convergence
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except when }m — Aj became small near the end E of the net. After iteration, the values of ¥ and y
at mesh points were found from (21) with interpolation for junction values.

We consider next the evaluation of g(«) from (54) starting from g = 4/3 for ¢ = 0 and with
given values of s;; and ¥ corresponding to # = uy and # = 1.53( —0.005)0 for the smallest mesh
size. The stages of the computation were first, the leading terms for g as a power series in 1 were
derived and used to obtain g(1.53) and g(1.525). Then for subsequent steps: (a) an estimate of
the new current g(x) was found by extrapolation and used to evaluate the integrand of (54);
(b) the integration over the current interval in ¥ was performed by a parabolic quadrature
formula; (¢) the resulting cubic equation for g was solved to give a revised value for the current
¢(#) and hence for the current integrand of (54); (d) the stages (b) and (¢) were iterated with
rapid convergence at all steps.

The governing equations for the mechanism involve net properties, but excessive storage
would have been required if the ncesssary net data at all mesh points had been found and stored
prior to the evaluation of the mechanism. Instead, in the final forward evaluation of the net, only
the basic data f,(u), g(u), vi(x) together with data on the junction and on and near DE and DF
were stored for use as input to the mechanism computations. There was then no difficulty in
using (18), (19), (21), (5) and (64) to compute net properties by marching out from DE in DEF
and from DF in ADF during the mechanism computations. Some input net data were not needed
for this recalculation of net properties, but served instead as checks on the accuracy of the
recalculations.

The mesh used for the computation of the mechanism properties in AFEDA (figure 2) consisted
of the intersections of (a) the trajectories # = 0.01( —0.005)1.53 and DF with (&) the boundary
ADE and the trajectories v = v;(u) corresponding to the preceding values of u. This enabled the
boundary conditions to be used directly at mesh points. Integrations over steps in # and v were
performed by a parabolic quadrature formula except for certain steps adjacent to boundaries
where the trapezium rule was used.

For the numerical evaluation of §,, £, in DEF (figure 2), equations (70), (71) and (75) were
expressed in the integral equation forms

a@w=MW~mwf

v—

v

A ﬂl gu dU, (A 1)

where the integration is along a trajectory # = constant, and
uj(v)

§v = /ngudu, (A 2)

u
where the integration is along a trajectory v = constant meeting the junction AFE at u = u;(v).
Now on DE, where v = vy, the values of §, are given by (74) and ¢, then follows from (A 2). The
computations of ,, {, then marched out from DE with steps in v as the outer loop. At each step
in v, after first extrapolating {, to the new value of v at each mesh point, equations (A 2) and (A 1)
were used successively in a rapidly convergent iteration process to obtain the final values of ¢,
and &, (no iteration was needed on the junction where §, = 0).

Having found §,, §,, there are alternative methods for finding the slopes depending on the fact
that equations (62), (63), (68) and (69) are not independent when §,, ¢, satisfy (70) and (71).
For the present solution, iteration was avoided by noting that equations (63), (69) and (73), with
use of y, = 0A[0v from (5) and (64), can be solved explicitly in terms of §, to give

£=(1-Cy)sinA’+ D, cos A’,}

. (A3)
7 = (1-C;j)cosA’—D;sin A,


http://rsta.royalsocietypublishing.org/

PN

s |

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

LIMIT ANALYSIS FOR PLATES 153

where Q, = f "¢ cosAdy, D, = f " ¢ sin A’ do, (A 4)
‘UE 'UE

and the integrals are along a trajectory ¥ = constant with A” equal to the change in net angle on
this trajectory starting from A’ = 0 on DE.

For the numerical evaluation of §,, §, in ADF (figure 2), the equations (70), (79) and (71)
were expressed in the integral equation forms

b= mta, (A5)

where the integration is along a trajectory # = constant, and

u+A

&) = & (ut Auv) — f ety du, (A6)

where the integration is along a trajectory v = constant.

Now the values of §, on DF as defined in (81) were known from the calculations for the region
DEF, and the values of {, on DF were then found from (A 5). The computations then marched
out from DF with steps in decreasing u as the outer loop. At each new value of 4, the mesh points
on the edge AD and the junction AF were treated separately from the intermediate mesh points.
At the edge mesh point, §, = 0 from (79) and then {, was found from (A 6); though as the edge
mesh point does not lie on a trajectory v = v;(u) corresponding to previous mesh points, this
involved interpolation for the preceding value of « to find the values of g,&, and &, on the
trajectory v = constant passing through the new edge mesh point. For the intermediate mesh
points, first estimates of §, were obtained by extrapolation and then equations (A 5) and (A 6)
were used successively in a rapidly convergent iteration process. Finally, the junction mesh point
is special as the trajectory v = vj(u) through this point lies outside the mesh for the preceding
values of u. However, {, = 0 from (75) at this point and ¢, then follows from (A 5).

The edge slope on AD was found from (80), while the slopes at other mesh points were com-
puted from the following solution of equations (63), (69) and (78)

£ =[n(u, —u) —Gy]sin A+ D, cos A, AT
7 = [(u, —u) —GC,] cos)\—Dzsin)\,} (AT)
where C, = ’ g,cosAdy, D, = ’ g,sin Ado, (A 8)

with integrations along a trajectory « = constant.

In both DEF and ADF, the deflexion w was found by integrating /4,9 with respect to v along
trajectories # = constant, starting from w = 0 on ADE. Also, both for intrinsic interest and as an
overall check on the mechanism calculations, the energy dissipation in the mechanism for an
octant of the plate was computed and compared with the computed value of the work done by
the pressure, noting that contributions from the developable surface are easily expressed in terms
of integrals of mechanism properties along the junction AFE. The agreement was very satis-
factory with a fractional error of order 10-8.
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ArrENDIX B. THE BEHAVIOUR OF {,, {, FOR SMALL VALUES OF
Figure B 1 shows the region ADF (figure 2) in a plane of coordinates («,v); thus AD is the line
u+v = 0, FD is the line # = — vy, and AF is the curve v = v;(x). The curvature of AF is too small
to show in the figure, and AF is nearly coincident with the line « + 2v = 0 and lies slightly below
it, so that 20y(u)+u <0 for u>0 onAF, (B 1)
and if we let the inverse relation on AF be u = u;(v), then

—v<uj(v) < —2v for u>0 onAF. (B 2)

s

D
Ficure B 1. Region ADF in (u, v) plane.

Now, as discussed in§ 7, §, > 0, {, < 0in ADF with {, = 0on AD and ¢, = 0 on AF, and then
from (65), (70) and (71) it follows that {, is a maximum on AF for given », and that —¢, is
a maximum on AD for given v. It suffices to consider these maximum values for which the
numerical results indicate that {,, —{, decrease steadily on AF, AD respectively as u decreases.
We note also that the maximum values of zz, and —y; occur at A where each is equal to 1.15...,

so that certainly
0 < g, —ppy <2 (B3)
at all points in ADF. :

In figure 16, RS is any typical line # = #, (say) in ADF and TW is the associated line v = — Ju,
and we note that W lies above S on AF by virtue of equation (B 1). Let the value of —¢, at R be
f(u,); then from the above properties, f(x,) is the maximum value of —¢,in ARS so that

0<—&, <f(yy) for 0 <u<u,. (B4)
The value of — ¢, at T is then f(4u,) and by integrating (71) along TW and using (75), we find

uj(v)

St = [ patudn, (0 = ~ug). (®5)
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Also, the value of {, at any point (,v) in ARS is given by (A 5), whence using (B 3) and (B 4)

we obtain
0<&, <2(u+v)f(uy) for 0<u<u, (B 6)

which holds in particular for the values of §, in (B 5). Then from (B5), (B3) and (B 6) we find

0 < f(Fuo) < 2f(uo) [us(— o) — o)™ B7)
But from (B 2), $u, < us( —4u,) < u,, whence the inequality
0 < f(3uo) < 0.5u3f(up) (B 8)

holds for any #, > 0 in ADF, and in particular for , small. Thus by halving the range of #, the
maximum value of — ¢, is reduced by a factor which tends to zero as #— 0 at A. In contrast, if
— ¢, behaved predominantly like a finite power #® for small z on AD, the effect of halving the
range of # would be a reduction by a constant factor ™ in the limit 0. Thus the maximum
value of — ¢, tends to zero faster than any finite power of « as u—0, and {, is not analytic at A.
Finally from (B 6), for a given range of small #, the maximum value of §, is of smaller order than
the maximum value of —¢,, whence ¢, is also not analytic at A.
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